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SUMMARY

A multidimensional advection scheme in 3D based on the use of face-matched flux polyhedra to integrate
the volume fraction evolution equation is proposed. The algorithm tends to reduce the formation of
‘over/undershoots’ by alleviating the over/underlapping of flux polyhedra, thus diminishing the need to
use local redistribution algorithms. The accuracy and efficiency of the proposed advection algorithm, which
are analyzed using different tests with prescribed velocity field, compare well with other multidimensional
advection methods proposed recently. The algorithm is also applied, in combination with a Navier–Stokes
solver, to reproduce the impact of a water droplet falling through air on a pool of deep water. The
interfacial curvature is calculated using a height-function technique with adaptive stencil adjustment, which
provides improved accuracy in regions of low grid resolution. The comparison of the numerical results
with experimental results shows a good degree of agreement. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Among the different methods developed to simulate free surface and interfacial flows [1], the
volume of fluid (VOF) method is one of the most widely used. In this method, the interface evolution
is described using a discrete function, F , whose value in each cell of the computational mesh is the
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fraction of the cell volume occupied by the reference fluid. The function F is a discretized version
of a function, f , which is continuous except at the interface, where it jumps from zero to one.
The several variants of the method proposed during the last three decades can be distinguished by
the characteristics of the algorithms used to determine the position of the interface (reconstruction
algorithm) and to integrate in time the volume fraction equation (advection algorithm). Detailed
reviews can be found in [2, 3].

For the advection step, it is well known that geometric procedures are more accurate than
algebraic formulations. Among these procedures, operator-split schemes require two geometric
integrations in 2D and therefore two interface reconstructions per time step (one more in 3D).
Some recent examples of operator-split schemes implemented in 3D can be found in [4–7]. In
the coupled level set/VOF method of Sussman and Puckett [8], the advection in the level set
and volume fraction functions is also made using a second-order operator-split scheme. Unsplit
time-integration (multidimensional) schemes are more efficient than split methods for calculating
fluxes through cell faces and need to reconstruct the interface only once per time step (in 2D or
3D), although their extension to 3D is more complicated. Miller and Colella [9] developed an
extension to 3D of the unsplit advection scheme of Pilliod and Puckett [10, 11], and, more recently,
Liovic et al. [12] proposed a 3D extension of Rider and Kothe’s [2] 2D volume tracking unsplit
advection scheme.

The aim of this work is to extend the advection algorithm we proposed in [13] to 3D. The
new method involves a multidimensional advection scheme based on the use of face-matched flux
polyhedra to integrate the volume fraction evolution equation in order to substantially reduce the
‘over/underlapping’ of flux polyhedra. The use of a set of simple geometric tasks (specifically
developed for this work) makes the method efficient, robust and relatively simple to implement
in 3D. Although the algorithms have been implemented in a Cartesian grid, assuming that the
normal velocity components are stored at the center of the cell faces (MAC grid), they can easily
be extended to other types of grid with no loss of generality.

The proposed advection method is described in Section 2, and its coupling with the Navier–
Stokes solver is presented in Section 3. The results are compared in Section 4 with those obtained
by other authors for the following tests: advection of a spherical fluid body in simple rotational
flow, interface deformation in a flow with non-uniform vorticity and the impact of a water droplet
on a deep water pool.

2. MULTIDIMENSIONAL ADVECTION

For 3D incompressible flows, the volume fraction evolution equation

� f

�t
+v ·∇ f =0 (1)

can be integrated over a given cell, �, of volume V�, and the time interval �t= tn+1− tn, to obtain,
at each time step,

Fn+1=Fn− 1

V�

∫ tn+1

tn

∫
�

∇ ·(v f )d�dt (2)
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where the divergence constraint ∇ ·v=0 has been taken into account. The integral in Equation
(2) represents the net VOF advected out of the cell VFT and will be solved geometrically using
the face-matched flux polyhedron advection (FMFPA-3D) method proposed in this work, which
is described below.

Before beginning the description of the proposed advection method, it should be mentioned
that, before applying the advection step, the interface will be assumed to have been reconstructed
in the previous time step using a PLIC method (such as that proposed in the companion paper
[14]), in which the interface is reconstructed in each cell as a plane n·x+C=0, where n points to
the reference fluid. Since the aim of this paper is to assess the proposed advection method, widely
used methods, for which many results are available in the literature, will be used to determine
the vector normal to the interface, n, and constant C . Thus, unless otherwise stated, n will be
obtained from the gradient of the volume fraction function, ∇F , using the method of Youngs [15]
(see also [4, 16]), and the constant C will be determined from the value of F in the cell and
enforcement of local volume conservation using the analytical method of Scardovelli and Zaleski
[17] (alternatively, an iterative method, such as Brent’s method [18], could also be employed).

The proposed advection method to determine the new VOF fraction at (tn+�t) and every grid
cell, Fn+1, consists of the following five steps:

1. Calculate the volumetric flux through every face, �, of the cell, which can be expressed as

q=
∫

�
v ·n� d� (3)

where n� is the unit normal vector to the face pointing out of the cell. The integral in
Equation (3) is determined from the velocity components at the face center, using a midpoint
rule.

2. Determine the volume

Vd =
∫ tn+1

tn
q dt (4)

crossing every face � of the cell during the time interval �t . In tests with prescribed velocity
fields, the integral in Equation (4) is solved using a trapezoidal quadrature rule. When the
Navier–Stokes equations are being solved to calculate the velocity field, the integral in
Equation (4) is solved using the face-centered velocity at an intermediate time tn+1/2.

3. Construct a flux polyhedron of volume Vd at every face of the cell.
4. Determine the VOF advected during the time interval �t through every face of the cell, VF ,

by truncating the corresponding flux polyhedron with the reconstructed interface.
5. Calculate the total net VOF, VFT , that leaves (or enters) the cell as the sum of the truncated

fluid volumes advected through its six faces, VFT =∑6
p=1 VFp , and the new VOF fraction

at (tn+�t) given by Equation (2), which reduces to

Fn+1=Fn− VFT

V�
(5)

where V� is the total volume of the cell.

Steps 3 and 4, which are the key and most time consuming steps of the algorithm, are described
in detail in Sections 2.1 and 2.2, respectively.
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2.1. Construction of flux polyhedra

The flux region corresponding to a given cell face is delimited by a polyhedron that consists, in
the general case, of six faces, one of which obviously coincides with the cell face considered,
whereas the other five are determined, as indicated below, from the velocity vectors at the center
of the cell edges and from the condition of Equation (4).

The basic idea is to ensure that the flux polyhedra constructed at cell faces with a common
edge have a face with a common orientation. This orientation is determined by the interpolated
velocity vector at the center of the common edge. The approach is similar to that proposed in [13]
for 2D, in which the flux polygons at cell edges with a common vertex were constructed in such
a way that each had one edge with a common orientation, thus avoiding overlapping between flux
polygons (see Figures 1(a) and (b)). In 3D, the proposed method avoids the over/underlapping
between flux polyhedra constructed at cell faces with a common edge (see Figure 1(c)).

In Figure 2(a), the four faces (�2,�3,�4 and �5) of the flux polyhedron that have a common
edge with the cell face considered, �1, are constructed parallel to the velocity vectors normal
to their respective common edge centers (points a,b,c and d , respectively). For example, the
plane that contains face �2 is given by n�2 ·x+C�2 =0, where the normal unit vector n�2 =
(x2−x1)×va/|(x2−x1)×va| and C�2 =−n�2 ·x1.

It should be pointed out that over/underlapping may still occur between flux polyhedra
constructed at cell faces with only a common vertex, as shown in Figure 1(d). Overlapping could
be totally avoided if flux polyhedra at cell faces with a common vertex were constructed with
an edge with a common orientation (given by the direction of the velocity vector at the common
vertex), although at the cost of an additional degree of complexity in the integration (note that
the faces of the flux region would, in general, be non-planar surfaces). Such an approach will be
considered in future work.

The procedure used to determine the orientation and location of the remaining face requires
a more detailed explanation. This is face �6 in Figure 2(c), which is defined by plane n�6 ·x+
C�6 =0.

2.1.1. Analytical determination of the orientation of face �6. Face �6 is constructed parallel to
the two segments that join points a′−c′ and b′−d ′ of Figure 2(b). The location of each of these
points, �′, is defined by the position vector x�′ =x�−v��t , where x� is the position vector of the
edge center � of face �1 (points a, b, c and d in Figure 2(b)) and v� is the corresponding velocity
vector normal to the edge. In the case of Figure 2(b), for example, the orientation of face �6 is
therefore defined by a normal vector perpendicular to both segments a′−c′ and b′−d ′, which can
be obtained analytically as

n�6 =sign(q)
(xa′ −xc′)×(xd ′ −xb′)

|(xa′ −xc′)×(xd ′ −xb′)|

Note that the sign of the volumetric flux q determines on which side of face �1 the flux polyhedron
must be constructed.

For the MAC grid used in this work, each component of v� normal to the edge is obtained
from an average of the corresponding values at the center of the two faces sharing the edge that
are perpendicular to the component considered. For the edge center (i+1/2, j+1/2,k) of the cell
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(a) (b)

(c) (d)

Figure 1. Flux regions constructed at two cell faces with a common edge: (a) Rider and Kothe [2] method;
(b) EMFPA method for 2D [13]; (c) FMFPA-3D proposed in this work; and (d) overlapping between flux

regions constructed at two cell faces with only one common vertex.

centered at (i, j,k), for example,

ui+1/2, j+1/2,k =(ui+1/2, j,k+ui+1/2, j+1,k)/2

vi+1/2, j+1/2,k =(vi, j+1/2,k+vi+1, j+1/2,k)/2

It was seen that by also considering the velocity component parallel to the edge, the overall
improvement in accuracy of the proposed advection method is practically imperceptible, whereas
the central processing unit (CPU) time increases by around 5%.
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(c)

(a) (b)

Figure 2. Face-matched flux polyhedron: (a) construction of the four faces that have a common edge with
the cell face considered; (b) determination of the orientation of the remaining polyhedron face; and (c)

final flux polyhedron after imposing the volume conservation constraint of Equation (4).

2.1.2. Analytical determination of the position of face �6. The position of face �6, given by the
constant C�6 , is obtained by imposing the volume conservation constraint of Equation (4) and
taking into account that the volume of a flux polyhedron of P faces with Mp vertices in each
face p can be expressed as [19]

Vd = 1

6

P∑
p=1

[
(n�p ·xp,1)n�p ·

Mp∑
m=1

(xp,m×xp,m+1)

]
(6)

(subscript m+1 must be replaced by 1 for m=Mp). Here, n�p is the unit length normal to face �p
(pointing out of the polyhedron) and xp,m is the position vector of the counterclockwise (viewed
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from outside the polyhedron) ordered vertex m of face �p (i.e. an ordered list of vertices for face
�2 of the flux polyhedron of Figure 2(c) is the sequence of vertices 2, 1, 5 and 6).

Note that the unknowns in Equation (6) are the position vectors of the four vertices of face �6.
Each vertex x6,m is given by the intersection between the plane n�6 ·x+C�6 =0 and the line Lm
(parallel to the unit vector, e6,m , determined from the unit length vectors normal to polyhedron
faces, as indicated in Figure 2(c)) of intersection between the planes containing the other two
polyhedron faces passing through vertex m. For convenience, it can be expressed as a function of
the constant C�6 as

x6,m =x06,m+�6,mC�6e6,m (7)

where �6,m =−1/(n�6 ·e6,m) and x06,m is the position vector of the intersection point between line
Lm and a plane defined by n�6 ·x=0 (parallel to face �6 and passing through the origin of the
coordinate system), which may be expressed as

x06,m =x1,m′ +�6,m(n�6 ·x1,m′)e6,m (8)

where x1,m′ is the position vector of the vertex of the considered cell face (�1 in Figure 2) located
on Lm .

Introducing Equation (7) into Equation (6) with P=6 and Mp =4, equating Equation (6) to
Equation (4) and rearranging terms yield the following cubic polynomial function for C�6 :

(Q�6 ·n�6)C
3
�6

+
[
L�6 ·n�6 +

5∑
p=1

Q�p ·n�pC�p

]
C2

�6

+
[
K�6 ·n�6 +

5∑
p=1

L�p ·n�pC�p

]
C�6 +

5∑
p=1

K�p ·n�pC�p +6Vd =0 (9)

from which the constant C�6 can be obtained analytically [18]. In this equation,

C�p = −n�p ·xp,1

K�p =
4∑

m=1
x0p,m×x0p,m+1

L�p =
4∑

m=1
(x0p,m−1×ep,m+ep,m×x0p,m+1)�p,m

Q�p =
4∑

m=1
(ep,m×ep,m+1)�p,m�p,m+1

(10)

(subscripts m+1 and m−1 must be replaced by 1 and 4 for m=4 and =1, respectively). For
vertices that are not placed on face �6, x0p,m =xp,m , ep,m =(0,0,0) and �p,m =0.

2.2. Determination of the advected VOF

The VOF advected through each face of a given cell, VF , which is taken to be positive when the
fluid leaves the cell, will depend on the shape of the corresponding flux polyhedron and the location
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of the reconstructed interface. A set of simple geometric tools, described below in Section 2.2.1,
is used to compute the volume of the flux polyhedron truncated by cell faces and by the interface.
Firstly, the volumes occupied by the polyhedron in different cells are determined (note that, for
the type of polyhedron constructed, donating regions from several cells need to be considered; see
Figure 3(a)). Then, these volumes are cut by the reconstructed interface to obtain the corresponding
truncated fluid volumes (Figure 3(b) shows, as an example, the truncation of the volume inside the
considered cell), which are added to obtain the total truncated fluid volume, VF , advected through
the cell face considered.

2.2.1. Volume truncation. The successive plane–polyhedron intersection operations needed to
obtain the VOF advected through a given cell face are performed as follows. The signed distance,

(a)

(b)

Figure 3. Computation of the fluid volume advected through one face of a given cell: (a) truncation of
the flux polyhedron with the cell faces and (b) truncation of the cut flux polyhedron inside the considered

cell with the reconstructed interface plane.
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�m , from each flux polyhedron vertex, xm , to a plane defined by n·x+C=0 is computed as
�m =n·xm+C . Note that n is assumed to point to the reference fluid or to the resulting truncated
volume, depending on whether the cutting surface is the interface or a cell face. Also note that
if the normal vector, n, points to the vertex, the sign of � will be positive. Whether or not a
plane–polyhedron intersection exists can easily be determined by comparing the relative signs of
the �m values of the polyhedron vertices. The truncated polyhedron will be defined by the vertices
of the flux polyhedron which have a positive value for the signed distance function and by the
intersection points between the plane and the edges of the polyhedron. If, for example, one of these
edges is defined by the two adjacent vertices x1 and x2 (�1 and �2 must have opposite signs), the
resulting position vector of the intersection point can be expressed as

xI =x1− �1

�2−�1
(x2−x1)

The volume of the truncated polyhedron can finally be obtained from Equation (6).

2.2.2. Special case in which the flux polyhedron volume is lower than Vd. In certain circumstances,
the maximum volume of the flux polyhedron for face �1 that can be constructed (determined by
the intersection between faces �3 and �5 or �2 and �4; see the example of Figure 4) is lower than
the volume Vd calculated from Equation (4); hence, the constraint given by Equation (6) cannot be
imposed to construct the polyhedron. In such cases, a flux polyhedron of five faces with a volume
lower than Vd is constructed. The VOF advected through the considered cell face is then taken to
be equal to that resulting from the truncation of the flux polyhedron by the interface, corrected
by the flux factor proposed by López et al. [13] for similar situations, which is equal to the ratio
between the volume given by Equation (4) and that of the flux polyhedron, V ′

d :

Flux factor= Vd
V ′
d

(11)

2.2.3. Use of a local redistribution algorithm. The discretization errors introduced in the resolution
of Equation (2), along with the mentioned over/underlapping that may occur between polyhedra

Figure 4. Flux polyhedron adjustment at the time step from t=0 to �t= 1
64 , in the cell with coordinates

given in the figure, in the deformation test of LeVeque [20] for a 323 grid.
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with only one vertex in common, and despite the significant reduction achieved with the use of
the FMFPA-3D method proposed in this work, may still cause small overshoots (values of F>1)
or undershoots (F<0) in the volume fraction distribution. When this occurs, a local redistribution
algorithm similar to that proposed by Harvie and Fletcher [21] can be applied.

3. COUPLING WITH THE NAVIER-STOKES EQUATIONS

The new VOF method described above was solved in combination with the incompressible Navier–
Stokes equations to obtain some of the results presented in the next section. For this purpose, the
proposed algorithms were implemented in a code that solves the Navier–Stokes equations on both
sides of the interface. The code is an extension to 3D of that proposed by Gómez et al. [22] (see
also Reference [23]). The projection step has been slightly modified to incorporate a continuous
surface tension model based on the balanced-force algorithm proposed by Francois et al. [24] and
to obtain a discrete divergence-free velocity field at face centers. In this continuous surface tension
model, the surface force is calculated at the cell faces as ��f(∇F)f, where � is the surface tension
coefficient, �f is the interface curvature at the cell face and (∇F)f is the face gradient of the
volume fraction (note that the surface force is non-zero only on faces where the face gradient of F
is non-zero). The curvature is first computed at all interfacial cell centers using the height-function
technique described in Section 3.1 and then interpolated at cell faces. For example, for the cell
face (i+1/2, j,k), the following expression is used for interpolation:

�i+1/2, j,k =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (�i, j,k+�i+1, j,k) if � is defined in cells (i, j,k) and (i+1, j,k)

�i, j,k if � is only defined in cell (i, j,k) or

�i+1, j,k if � is only defined in cell (i+1, j,k)

The face-centered velocity at the intermediate time tn+1/2, used to construct the convective
term of the momentum equation and the flux polyhedron in the proposed FMFPA-3D method,
is obtained as a linear combination of the values at the two previous time steps, tn and tn−1,
given by vn+1/2= 3

2v
n− 1

2v
n−1 (note that this extrapolation does not introduce any additional non-

solenoidal component in the velocity field). The density and viscosity in each computational cell
are calculated from

�=�1+(�2−�1)F, �=�1+(�2−�1)F (12)

where subscripts 1 and 2 denote fluids at both sides of the interface and F is the volume fraction
in the considered cell. In order to take into account the divergence error present in the velocity
field, instead of Equation (1), which is used for advection of the volume fraction distribution in
tests with prescribed velocity field, we solve

� f

�t
+∇·(v f )− f ∇ ·v=0 (13)

Rider and Kothe [2] showed that by taking into account the last term of Equation (13) a more
precise local and global conservation of the volume fraction can be achieved, along with a reduction
(although not complete) in the appearance of overshoots or undershoots.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:897–921
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3.1. Calculation of the interfacial curvature

In this section, we will briefly describe the method used to calculate the interfacial curvature in
the droplet impact problem considered in Section 4.2, which is an especially important issue when
using VOF methods. The interface curvature is calculated from the volume fraction distribution at
tn+1 using the height-function technique [3, 25–28], whose accuracy is increased in this work by
introducing the improvements described below.

Let us assume that, at a given interfacial cell, (i, j,k), the largest component of the interface
normal vector is aligned with the z-axis (i.e. |nz|>|nx | and |nz|>|ny |). Then, a local distribution
of a height function, H , is calculated using a 3×3 stencil on the xy plane centered at cell (i, j,k)
(this stencil, which will be used to calculate the interface curvature, will be referred to hereafter
as the �-stencil),

Hr,s =
3∑

t=−3
Fi+r, j+s,k+t�zk+t for r =−1,0,1 and s=−1,0,1 (14)

where �z is the cell height. Note that we need values of F on a 3×3×7 stencil surrounding the
cell (i, j,k) (which will be referred to hereafter as the HF-stencil).

The curvature of the interface at (i, j,k) is determined as

�i, j,k = Hxx +Hyy+Hxx H2
y +HyyH2

x −2HxyHx Hy

(1+H2
x +H2

y )
3/2

(15)

where the derivatives are obtained from the distribution of H within the �-stencil centered at
(i, j,k), using standard second-order finite-difference approximations. The interface curvature
at cell (i, j,k) is determined using Equation (15) only if the following condition is satisfied:
hk−1/2<H0,0<hk+1/2, where hk−1/2 and hk+1/2 are the heights of the lower and upper cell faces
over the bottom of the HF-stencil (lower face of cell (i, j,k−3)), respectively (see Figure 5(a)).
Otherwise, the curvature is made equal to that calculated in the contiguous cell with the same
subindices i, j where the mentioned condition is satisfied. For example, at cell (i, j,k+1) in Figure
5(a), hk+1/2>H0,0; hence, �i, j,k+1 is taken equal to �i, j,k .

In order to increase the accuracy of the model in regions with low grid resolution (thin fluid
structures or high curvature regions), we introduce the following two improvements in the calcu-
lation of the height function, H . First, the size in the height-function direction of the HF-stencil is
adapted. For example, if nz is the largest component of the interface normal vector in cell (i, j,k),
the length of the stencil is adjusted within a range from 3×3×1 to 3×3×7 cells. To this end,
the number of cells of the stencil above cell (i, j,k) in the positive z-direction, tup, is gradually
increased up to a maximum of 3 cells as long as the following three conditions are satisfied:

sign(nz)(�k+tup −�k+tup−1)>0, �k+tup �=0 and �k+tup �=9(�k+tup �=3 in 2D)

where �k =∑1
r=−1

∑1
s=−1 Fi+r, j+s,k . Note that the above three conditions guarantee that the sum,

�k , of volume fractions along the HF-stencil follows an overall monotonic variation along the
height-function direction. Similarly, the number of cells of the stencil below cell (i, j,k), tlow, is
adjusted within a range from tlow=0 to 3.

Figure 5(a) shows an example in 2D in which the HF-stencil is adjusted to only 3 cells along
the height-function direction (note that �k+2=0 and �k−2=3, and thus tup=1 and tlow=1). It
can be seen that this yields the same curvature result as when a HF-stencil of 7 cells along the
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(a)

(b)

Figure 5. Height function calculation in 2D when the stencil is crossed by (a) one
interface and (b) two interfaces.

height-function direction is used, while reducing the number of cells involved in the curvature
calculation and, consequently, the CPU time consumed. Figure 5(b) shows a similar example of a
case with two interfaces crossing the HF-stencil, in which the upper interface is exactly the same
as that in Figure 5(a), and the lower one may affect the accuracy of the calculation of the curvature
of the upper one. Note that, after the stencil adjustment (see the central picture of Figure 5(b)), a
considerable improvement in the curvature calculation (�=−0.184 instead of −0.446, the value of
which is obtained using the standard 3×7 HF-stencil) is achieved. Note that the stencil adjustment
based on the above overall monotonic conditions (�k−3<�k−2 and �k+2=0, and thus tlow=2 and
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tup=1) reduces the distortion effects introduced by the presence of an additional interface in the
stencil.

An additional improvement consists of introducing a modified distribution of the volume fraction,
F∗, used to calculate the height function, which is forced to follow a local monotonic varia-
tion along the height direction. For example, if sign(nz)(Fi+r, j+s,k+t −Fi+r, j+s,k+t+1)>0 for t=
−1, . . . ,−tlow or sign(nz)(Fi+r, j+s,k+t −Fi+r, j+s,k+t−1)<0 for t=1, . . . , tup, then F∗

i+r, j+s,k+t =
1
2 (1+sign(t)sign(nz)); otherwise, F∗

i+r, j+s,k+t =Fi+r, j+s,k+t . Hence, the height function in the
�-stencil is constructed as

Hr,s =
tup∑

t=−tlow
F∗
i+r, j+s,k+t�zk+t for r =−1,0,1 and s=−1,0,1 (16)

Note that, in the case of Figure 5(b), with this additional adjustment F∗
i+1,k−2 is necessarily unity,

producing the same curvature as in the case of Figure 5(a) (see the picture at the right of Figure
5(b)). A similar monotonic correction in the volume fraction was previously suggested by Malik
et al. [29] for a 2D problem using a fixed 3×7 HF-stencil.

3.1.1. Assessment of the curvature model. Table I shows the maximum EL∞ =max |�−�exact| and
average EL1=1/N

∑N
i=1 |�i −�iexact| curvature errors for a sphere with diameter equal to 4 and

an ellipsoid with axes of length 4.6, 4 and 3.4 in a domain of size 8×8×8. The volume fractions
are initialized as in [24, 26], using a local mesh refinement technique. The errors were calculated
over 100 different situations generated by randomly changing the center of the fluid bodies. The
results show that the method reaches a second-order accuracy for both L∞ and L1 error norms.
On the other hand, the ability of the proposed method to calculate the curvature of the interface
in regions of thin fluid filaments (Figure 6(a)) can be clearly seen from Figure 6(b), which shows
results corresponding to the problem of a hollow sphere with diameter equal to 4, centered in a
domain of 83, obtained with a grid resolution of 403 cells, in which the fluid has a thickness, e, of
only twice the cell size (2h). Figure 6(c) represents the maximum EL∞ (left picture) and average
EL1 (right picture) curvature errors for the outer interface obtained using the standard 3×3×7
(dashed lines) and proposed adjusted (continuous lines) HF-stencils, as a function of the ratio
between the fluid thickness, e, and the cell size, h. Note that the height-function technique with
the proposed adjusted stencil makes it possible to obtain highly accurate results even with a fluid
thickness of only twice the cell size, whereas the standard 3×3×7 stencil requires the fluid to
have a thickness of about four times the cell size at least to produce accurate curvature results.

Table I. Maximum and average curvature error for a sphere with diameter equal to 4 and an ellipsoid
with axes of length 4.6, 4 and 3.4 in a domain of size 8×8×8.

Sphere Ellipsoid

Grid size EL∞ O EL1 O EL∞ O EL1 O

203 3.34×10−1 2.65×10−2 3.96×10−1 3.31×10−2

2.1 2.4 1.6 2.4
403 7.81×10−2 5.02×10−3 1.31×10−1 6.49×10−3

2.6 2.0 1.8 2.0
803 1.31×10−2 1.23×10−3 3.71×10−2 1.61×10−3
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(a)

(c)

(b)

Figure 6. Hollow sphere with outer diameter equal to 4, centered in a domain of 83: (a) schematic repre-
sentation of the problem; (b) curvature results obtained for a case with a fluid thickness equal to 2h, using a
grid resolution of 403 cells; and (c) maximum EL∞ and average EL1 curvature errors for the outer inter-
face obtained using the standard 3×3×7 stencil and the proposed adjusted stencil, as a function of e/h.

In order to assess the behavior of the curvature model in combination with the Navier–Stokes
solver, the equilibrium of an inviscid static spherical drop without gravity, with a radius R=2 and
located at the center of a domain of size 83, is also considered. The densities inside and outside
the drop are, respectively, �1=1 and �2=0.1, and the surface tension coefficient � is taken to
be 73. Since the gravity and other external forces are absent and the flow solver exactly balances
the pressure gradient and surface tension force [24], any velocity field produced is a non-physical
numerical artifact due to the interfacial curvature errors. To measure the spurious currents, which
are estimated by the maximum velocity in the computational domain, |umax|, this test is computed
using different grids and a time step of 0.001. The initial pressure and velocity are set to zero.
Figure 7 shows |umax| after 1 and 50 time steps. The results of Francois et al. [24] and Lörstad et al.
[25], also obtained with a height-function technique for the curvature calculation, are included in
the figure. Note that our results and those obtained by Francois et al. [24] are very close because
the same scheme was used to incorporate the surface tension force and because the grid used
was sufficiently fine to allow the curvature to be accurately calculated with a standard 3×3×7
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Figure 7. Results of the maximum velocity |u|max after 1 and 50 time steps for the inviscid
static drop in equilibrium with different grid sizes and �t=0.001. Comparison with the results

of Lörstad et al. [25] and Francois et al. [24].

HF-stencil. Also note that, after 50 time steps, the spurious currents decrease as the grid refinement
increases with second-order convergence. For the first time step, the maximum velocity obtained
by Lörstad et al. [25] is lower, which may be due, in part, to the use of an interpolation kernel to
smooth the curvature. However, it is clear that the benefit of curvature smoothing is not evident
after 50 time steps.

4. RESULTS AND DISCUSSION

In this section, the accuracy and efficiency of the proposed advection method are analyzed using
different tests. The first test corresponds to the advection of a spherical fluid body in simple
rotational flow. Then, the ability of the proposed method to handle interfaces that undergo large
deformation is analyzed in a flow with non-uniform vorticity. Finally, some results of the impact
of water drops on a deep water pool are presented.

4.1. Tests with prescribed velocity field

In order to assess the accuracy and efficiency of the proposed method, the results obtained with
it are compared with those obtained with our implementation in 3D of the method proposed
by Rider and Kothe [2] for 2D (we will refer hereafter to our extended version as the RK-3D
method). In general, the correction of the flux regions at the cell edges proposed in [2], which
was made using a donored transverse velocity vector (see Figure 1(a)), causes the faces of the
flux polyhedra constructed at cell faces with a common edge to have different orientations in
the presence of spatially varying velocity fields. This produces over/underlapping of the flux
polyhedra, which tends to increase the formation of overshoots or undershoots and makes the use
of a local redistribution algorithm more necessary than with the proposed method. It should be
noted that the correction proposed in [2] does not necessarily enforce local volume conservation in
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a divergence-free velocity field, whereas in our extension to 3D of the Rider and Kothe [2] method
the polyhedron face opposite the corresponding cell face is appropriately displaced to enforce the
volume conservation constraint of Equation (4). All test cases were run on a workstation with dual
2GHz Intel T7200 processors.

4.1.1. Rotation test. The first test involves the rotation of a sphere of fluid of radius 0.15, initially
centered at (0.5,0.75,0.5), around an axis parallel to the z-axis and centered in a domain of size
1×1×1, in a uniform vorticity field. A Courant–Friedrichs–Lewy (CFL) number based on the
maximum velocity component in the domain is approximately equal to 0.5 was used. The error is
estimated with an L1 error norm defined as

E= ∑
i, j,k

V (i, j,k)
� |F (i, j,k)−F (i, j,k)

e | (17)

where V (i, j,k)
� is the volume of cell (i, j,k), and F (i, j,k) and F (i, j,k)

e are, respectively, the calculated
and ‘exact’ volume fractions at the end of the test. The ‘exact’ values are accurately obtained from
the position of the sphere at the beginning of the test, using a recursive local mesh refinement
technique (see, for example, [24, 26]).

Table II shows the error, order of convergence and relative CPU times (required by advection,
tadv, and reconstruction, trec) after the sphere of fluid undergoes one complete revolution. The
results obtained with the proposed FMFPA-3D method are first compared with those obtained
with the RK-3D method, using in both cases the reconstruction method of Youngs. Note that
the proposed advection method noticeably increases the accuracy of the results at the cost of a
relatively low increase in the required CPU time, which is due to the more complex geometrical
operations involved in handling the face-matched flux polyhedra.

It should be emphasized that the overall conservation of fluid volume is considerably improved
when the proposed FMFPA-3Dmethod is used. This is a consequence of the reduction in polyhedron

Table II. L1 error norm, E , order of convergence, O, and relative CPU times (advection, tadv, and
reconstruction, trec, times) obtained in the rotation of a spherical fluid body test, using two different

advection methods, the reconstruction method of Youngs and three grid sizes.

Advection algorithm Grid size E O Relative CPU time (tadv+trec)

RK-3D 323 5.99×10−4 1.00 (0.95+0.05)
1.80

643 1.72×10−4 13.40 (12.94+0.46)
1.39

1283 6.57×10−5 198.94 (193.55+5.39)

FMFPA-3D 323 4.32×10−4 1.18 (1.13+0.05)
1.54

643 1.49×10−4 15.36 (14.92+0.44)
1.23

1283 6.36×10−5 216.65 (211.24+5.41)
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over/underlapping situations and the increase in accuracy which results from the reduction of
discretization errors. In order to illustrate this improvement, the coarse grid case was also solved
using both the RK-3D and the FMFPA-3D advection methods implemented in this work, but
without using any local redistribution algorithm to reduce the effect of ‘over/undershoots’. It can
be observed from Figure 8 that the proposed method leads to a considerable reduction in the
overshoots and undershoots, which were quantified as

FS= ∑
i, j,k

[|min(0.0,F (i, j,k))|+(max(1.0,F (i, j,k))−1.0)] (18)

The net change in total volume after one complete revolution was 0.05% for the RK-3D method,
and only 8.5×10−4% for the proposed FMFPA-3D method (almost two orders of magnitude
smaller). This improvement was found not only in the rotation test but also in the test described
below.

Similar results to those of Table II are presented in Table III using, instead of Youngs’ method, the
CLC-CBIR reconstruction method proposed in [14], for which a second-order accuracy is achieved.
Note that the use of a more accurate reconstruction method makes the difference between the RK-
3D and the FMFPA-3D advection methods higher (around 30% for all grids). It should be taken into
account that, when the CLC-CBIR method is used, the contribution of the reconstruction step to the
error E is reduced. A more detailed analysis of the use of the CLC-CBIR reconstruction method
in combination with the proposed FMFPA-3D advection method is discussed in the companion
paper [14].

Figure 9 shows a comparison between the flux polyhedra constructed using our extension to
3D of the Rider and Kothe [2] method and the face-matched flux polyhedra proposed in this work
(Figures 9(a) and (b), respectively). In these figures, the dashed lines represent the limits of the
donating flux regions (defined by the locations of the fluid particles that cross the considered cell

Figure 8. Overshoots and undershoots generated in the rotation test with the RK-3D and the FMFPA-3D
algorithms. Results obtained with the reconstruction method of Youngs, a grid size of 323 and CFL=0.5.
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Table III. L1 error norm, E , and order of convergence, O, obtained for three grid sizes in the
rotation of a spherical fluid body test, using the CLC-CBIR reconstruction method proposed

in [14] and different advection methods.

Advection algorithm Grid size E O

RK-3D 323 6.47×10−4

1.95
643 1.67×10−4

1.97
1283 4.26×10−5

FMFPA-3D 323 4.96×10−4

1.94
643 1.29×10−4

1.93
1283 3.38×10−5

face during the first integration time step �t of the test), which were determined accurately from
the prescribed velocity field. The differences between both methods can be clearly seen from the
figures.

4.1.2. Deformation test. In this test, proposed by LeVeque [20], a sphere of fluid of radius
0.15, initially centered at (0.35,0.35,0.35) within a unit computational domain, is deformed in a
solenoidal velocity field given by

u(x, y, z) = 2sin2(�x)sin(2�y)sin(2�z)

v(x, y, z) = −sin(2�x)sin2(�y)sin(2�z) (19)

w(x, y, z) = −sin(2�x)sin(2�y)sin2(�z)

which was modulated in time by multiplying by the factor cos(�t/T ), using a period T =3.
Table IV shows the error E , order of convergence and relative CPU times at t=T obtained using

the two advection methods implemented in this work. A CFL number (based on the maximum
velocity component in the domain) equal to 1.0 was used. The proposed FMFPA-3D method is
slightly more accurate than the RK-3D method. Note that the large interface distortion produced in
this test means that the accuracy of the whole method relies, to a large extent, on the reconstruction
step, which makes the differences between both advection methods lower than in the rotation test.
Owing to the larger deformation rates, the geometrical operations involved in both the RK-3D and
the FMFPA-3D methods reach a similar degree of complexity in this test, considerably diminishing
the differences in the CPU time compared with the rotation test. Figure 10 shows the results for the
interface shape at the end of the test (t=T ) obtained using three different grid sizes. The initial
sphere of fluid is represented in transparent color. The results obtained with the RK-3D algorithm
are similar to those shown in Figure 10.

In order to compare the proposed method with the unsplit VOF advection method recently
proposed by Liovic et al. [12] (PCFSC), the deformation test was also performed using both the
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(a)

(b)

Figure 9. Flux polyhedra constructed in the rotation test of Section 4.1.1 at different cell faces
located at z=0.5 and during the first time step, using two different advection methods: (a) our
implementation in 3D of the method of Rider and Kothe [2] and (b) the method proposed in this
work. A grid size of 103 and a CFL number equal to 1.0 were used. The exact limits of the donating

flux regions are represented with dashed lines.

RK-3D and the FMFPA-3D advection methods and the same reconstruction method of Youngs
used by these authors, for the same CFL number. The comparison between the corresponding
results, presented in Table V, shows that the accuracy of the FMFPA-3D method is slightly higher
than that of the advection method of Liovic et al. [12]. On the other hand, the differences between
the results obtained with the RK-3D and PCFSC methods are relatively small. This may be due
to the fact that, as mentioned by Liovic et al. [12], the PCFSC method looks like a 3D extension
of the 2D unsplit advection scheme proposed by Rider and Kothe [2]. One important difference
between the PCFSC method and our implementation in 3D of Rider and Kothe’s [2] scheme (first
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Table IV. L1 error norm, E , order of convergence, O, and relative CPU times (advection, tadv, and
reconstruction, trec, times) obtained in the deformation test of LeVeque [20] with CFL=1.0, using two

different advection methods and three grid sizes.

Advection algorithm Grid size E O Relative CPU time (tadv+trec)

RK-3D 323 7.53×10−3 1.00 (0.97+0.03)
1.52

643 2.62×10−3 11.04 (10.76+0.28)
1.89

1283 7.09×10−4 132.97 (130.09+2.88)

FMFPA-3D 323 7.22×10−3 1.14 (1.11+0.03)
1.46

643 2.62×10−3 12.32 (12.05+0.27)
1.93

1283 6.86×10−4 139.14 (136.26+2.88)

Figure 10. Results for the F=0.5 iso-surfaces obtained in the deformation test of LeVeque [20] with
CFL=1.0, using three different grid sizes.

Table V. L1 error norm, E , and order of convergence, O, obtained in the deformation test of LeVeque
[20], using the RK-3D and the FMFPA-3D methods in combination with Youngs’ reconstruction method,
for three different grid sizes and CFL=0.5. Comparison with the results obtained by Du et al. [30] with
their front tracking method (LGB) and by Liovic et al. [12] with their unsplit VOF advection method

(PCFSC) and Youngs’ reconstruction method.

Front tracking (LGB) [30] PCFSC [12] RK-3D FMFPA-3D

Grid size E O E O E O E O

323 5.72×10−3 7.86×10−3 7.85×10−3 7.44×10−3

3.72 1.43 1.51 1.42
643 4.33×10−4 2.91×10−3 2.75×10−3 2.79×10−3

1.82 1.98 1.89 1.97
1283 1.23×10−4 7.36×10−4 7.41×10−4 7.14×10−4

paragraph of Section 4.1) is that in the PCFSC method the constraint imposed by Equation (4) is
not explicitly enforced during the construction of the flux polyhedra. Instead, the flux factor of
Equation (11) is applied for all fluxes in spatially varying velocity fields. In the RK-3D method
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implemented in this work, as in the FMFPA-3D method, this scaling procedure is only applied in
the few cases in which the constraint imposed by Equation (4) cannot be geometrically enforced.

Table V also includes results obtained by Du et al. [30] using a front tracking method. The
accuracy of the results obtained by these authors is generally higher than that of PLIC-VOF methods
(an exhaustive comparison with other PLIC-VOF methods for different tests can be found in Du
et al. [30]). However, the advantages of using PLIC-VOF or similar methods to treat topological
changes in the interface still make them competitive from the point of view of computational
efficiency and robustness.

4.2. Drop impact test

In this section, a water drop of diameter D=2.9mm impacting a deep water pool with velocities
U =1.55 and 2.50ms−1 is considered. The Froude and Weber numbers are Fr =85 and We=96
for U =1.55ms−1 and Fr =220 and We=248 for U =2.50ms−1. Owing to the symmetry of
the problem, only one quarter of the physical domain was considered. The computational domain
used was 7D×3.5D×3.5D for U =1.55ms−1 and 9D×4.5D×4.5D for U =2.5ms−1. In both
cases the pool depth was 4.5D, the water drop was initially located at a height equal to 6.0D and
the domain was discretized on a mesh of 140×70×70 cells. In order to reach the desired impact
velocity, a fictitious gravitational force was used to accelerate the drop.

Figures 11(a), for U =1.55ms−1, and 12(a), for U =2.50ms−1, show the results of the F=0.5
iso-surfaces at different instants after the drop made contact with the pool surface. The time has
been made dimensionless with the time D/U . In both simulations, the net change in total volume
at the end of the test was lower than 3×10−6%. In the case of the impact velocity of 1.55ms−1,
the numerical simulation is able to predict, at tU/D=10.5, the entrapment of a bubble with a size
of around 0.2D. For the case of the impact velocity of 2.50ms−1, there is no bubble entrapment
and a thick Rayleigh jet is formed. The results at the dimensionless instant 35.8 clearly show the
formation of a secondary drop at the jet tip.

The numerical results obtained for the interface shape were assessed using experiments conducted
in this work, similar to those carried out by Morton et al. [31]. Drops of distilled water of 2.9mm
diameter, formed using a hypodermic needle, were allowed to fall from heights of about 14
and 36 cm on a water pool. These heights were adjusted in order to get the 1.55 and 2.5ms−1

drop impact velocities used in the numerical simulations. A high-speed digital camera (Redlake
MotionPro 10 000) was used to capture the images of the impact at a rate of 2000framess−1, with
a shutter speed of 0.5ms and a resolution of 512×256 pixels. Back lighting was provided by a
halogen lamp of 1000W. The drop impact velocity was measured from the movie images. The
dynamics of the impact was found to be relatively sensitive to the time elapsed since the needle
and pool were filled with distilled water, one of the causes probably being the heating produced
by the halogen lamp. The experimental results presented in Figures 11(b) and 12(b) were obtained
just after the needle and pool were filled. In successive experiments, made without replacing the
distilled water, the results tended to be more similar to those obtained experimentally by Morton
et al. [31], which are otherwise very close to those presented here.

A visual comparison between the numerical and experimental results presented in Figures 11
and 12 shows good agreement, even in small interfacial details such as those involved in the
bubble detachment from the floor of the crater formed by the drop impact that can be observed
in Figure 11, and the break-up of the Rayleigh jet and droplet formation shown in Figure 12. A
quantitative comparison is shown in Figure 13, where the numerical predictions for the evolution
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Figure 11. Comparison between (a) numerical predictions for the F=0.5 iso-surfaces and (b) experimental
results for the interface shape, at different instants after the drop has made contact with the pool surface,

for a drop impact velocity of U =1.55ms−1 (Fr =85 and We=96).

of the free-surface depth at the symmetry axis, Dc, are compared with the experimental results
for the drop impact cases of Figures 11 and 12. It can be observed that the numerical results
reasonably predict the cavity depth evolution during growth and collapse processes.

5. CONCLUSIONS

A volume of fluid method based on a new multidimensional procedure to integrate the volume
fraction advection equation has been developed for tracking interfaces in 3D. The fluid volume
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Figure 12. Comparison between (a) numerical predictions for the F=0.5 iso-surfaces and (b) experimental
results for the interface shape, at different instants after the drop has made contact with the pool surface,

for a drop impact velocity of U =2.5ms−1 (Fr =220 and We=248).

fluxes across cell faces are systematically obtained from the intersections between flux polyhedra
and the reconstructed interface. For this purpose, a set of simple geometric tasks has been used,
which makes the method efficient, robust and relatively simple to implement in 3D. The proposed
advection algorithm enforces mass conservation locally through the use of face-matched flux
polyhedra and reduces the formation of ‘over/undershoots’, thus diminishing the need to use
local redistribution algorithms. The proposed method has been assessed using different tests with
prescribed velocity fields. The accuracy of the results is slightly higher than that obtained with
other recently proposed multidimensional advection methods. A method to calculate the interfacial
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Figure 13. Comparison between numerical predictions and experimental results for the evolution of the
free-surface depth at the symmetry axis, Dc, for the drop impact cases of Figures 11 and 12.

curvature based on a height-function technique with adaptive stencil adjustment has also been
proposed, which improves accuracy in regions of low grid resolution. A comparison of the numerical
results with experimental results for the impact of a water droplet on a deep water pool points to
a good degree of agreement.
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